Real Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficients

نویسندگان

  • Juan Manuel Górriz
  • Javier Ramírez
  • Alberto Olivares
  • Pablo Padilla
  • Carlos G. Puntonet
  • Manuel Cantón
  • Pablo Laguna
چکیده

This paper shows an adaptive statistical test for QRS detection of electrocardiography (ECG) signals. The method is based on a M-ary generalized likelihood ratio test (LRT) defined over a multiple observation window in the Fourier domain. The motivations for proposing another detection algorithm based on maximum a posteriori (MAP) estimation are found in the high complexity of the signal model proposed in previous approaches which i) makes them computationally unfeasible or not intended for real time applications such as intensive care monitoring and (ii) in which the parameter selection conditions the overall performance. In this sense, we propose an alternative model based on the independent Gaussian properties of the Discrete Fourier Transform (DFT) coefficients, which allows to define a simplified MAP probability function. In addition, the proposed approach defines an adaptive MAP statistical test in which a global hypothesis is defined on particular hypotheses of the multiple observation window. In this sense, the observation interval is modeled as a discontinuous transmission discrete-time stochastic process avoiding the inclusion of parameters that constraint the morphology of the QRS complexes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correction: Real Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficients

Citation: The PLOS ONE Staff (2014) Correction: Real Time QRS Detection Based on M-ary Likelihood Ratio Test on the DFT Coefficients. PLoS ONE 9(12): e116654. doi:10.1371/journal.pone.0116654 Published December 26, 2014 Copyright: 2014 The PLOS ONE Staff. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distr...

متن کامل

Voice activity detection based on conjugate subspace matching pursuit and likelihood ratio test

Most of voice activity detection (VAD) schemes are operated in the discrete Fourier transform (DFT) domain by classifying each sound frame into speech or noise based on the DFT coefficients. These coefficients are used as features in VAD, and thus the robustness of these features has an important effect on the performance of VAD scheme. However, some shortcomings of modeling a signal in the DFT...

متن کامل

Simulation-Based Radar Detection Methods

In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like the GLRT method). In the sec...

متن کامل

Simulation-Based Radar Detection Methods

In this paper, radar detection based on Monte Carlo sampling is studied. Two detectors based on Importance Sampling are presented. In these detectors, called Particle Detector, the approximated likelihood ratio is calculated by Monte Carlo sampling. In the first detector, the unknown parameters are first estimated and are substituted in the likelihood ratio (like &#10the GLRT method). In the s...

متن کامل

An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio

It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014